

Interference occurs between the light reflected from the lower surface of the lens and the upper surface of the glass plate G.

Since the convex side of the lens is a spherical surface, the thickness of the air film will be constant over a circle (whose centre will be at O) and we will obtain concentric dark and bright rings.

Newton's rings

Condition for bright ring will be

$$2\mu t\cos r = (2n+1)\frac{\lambda}{2}$$

For air film , $\mu = 1$ and for near normal incidence r is very small and hence $\cos r = 1$

Thus,

$$2t = (2n+1)\frac{\lambda}{2}$$

Where
$$n = 0, 1, 2, 3...$$

R = radius of curvature of lens
t = thickness of air film at a
distance AB =r_n
OA = R - t
From
$$\triangle OAB$$

 $R^2 = (R - t)^2 + r_n^2$
 $\Rightarrow r_n^2 = R^2 - (R - t)^2 = R^2 - R^2 - t^2 + 2Rt = 2Rt - t^2$
As R>>t, $r_n^2 = 2Rt$
 $\Rightarrow t = r_n^2/2R$

$$D_{9} = 2\sqrt{9\lambda R} = 6\sqrt{\lambda R}$$
$$D_{16} = 2\sqrt{16\lambda R} = 8\sqrt{\lambda R}$$
$$D_{16} - D_{9} = 2\sqrt{\lambda R} \Rightarrow 8 \text{ fringes}$$

Fringe width decreases with the order of the Fringe and fringes get closer with increase in their order.

(2) - (1)

$$D_{n+m}^{2} - D_{n}^{2} = 4(n+m)\lambda R - 4n\lambda R$$

$$= 4m\lambda R$$

$$\implies \lambda = \frac{D_{n+m}^{2} - D_{n}^{2}}{4mR}$$

Suppose diameter of 6th and 16th ring are Determined then, m = 16-6 = 10

So

$$\lambda = \frac{D_{16}^2 - D_6^2}{4 \times 10 \times R}$$

Radius of curvature can be accurately measured with the help of a spherometer and therefore by measuring the diameter of dark or bright ring you can experimentally determine the wavelength.

Condition for bright fringes

$$2\mu t \cos r = n\lambda$$

Condition for dark fringes

$$2\mu t\cos r = (2n+1)\frac{\lambda}{2}$$

For air as thin film and near normal incidence $\mu = 1$ and $\cos r = 1$ So for bright fringes, $2t = n\lambda$

so for bright fringes,
$$2t - ii\lambda$$

For dark fringes, $2t = \frac{2n+1}{2}\lambda$

But we know that
$$t = \frac{r^2}{2R}$$
, $r = radius of ring$
For bright rings
 $\frac{2r^2}{2R} = n\lambda \implies r = \sqrt{n\lambda R}$
For dark rings
 $\frac{2r^2}{2R} = (2n+1)\frac{\lambda}{2} \implies r = \sqrt{\frac{(2n+1)\lambda R}{2}}$

So for Newton's rings for transmitted rays the central ring will be bright.

CENTRAL RING IS BRIGHT.

WAVELENGTH DETERMINATION

We know radius of the nth dark ring r_n is

$$r_{n}^{2} = n\lambda R$$

$$\Rightarrow \frac{D_{n}^{2}}{4} = n\lambda R$$

$$\Rightarrow D_{n}^{2} = 4n\lambda R \dots (1)$$

Similarly,

$$D_{n+m}^{2} = 4(n+m)\lambda R \quad \dots \dots (2)$$
(2) - (1)

$$D_{n+m}^{2} - D_{n}^{2} = 4(n+m)\lambda R - 4n\lambda R$$

$$= 4m\lambda R \quad \dots \dots (3)$$

$$\boxed{\lambda = \frac{D_{n+m}^{2} - D_{n}^{2}}{4mR}}$$

(for near normal incidence and
$$\mu_g < \mu$$

Condition for dark ring formation
 $2\mu t_n = n\lambda$ but $t_n = \frac{r_n^2}{2R}$
 $\Rightarrow 2\mu \frac{r_n^2}{2R} = n\lambda \Rightarrow r_n^2 = \frac{n\lambda R}{\mu}$
 $\Rightarrow \left(\frac{D_n}{2}\right)^2 = \frac{n\lambda R}{\mu} \Rightarrow D_n^2 = \frac{4n\lambda R}{\mu} \dots (4)$

Similarly we can get

$$D_{n+m}^{'2} = \frac{4(n+m)\lambda R}{\mu} \quad \dots \dots (5)$$
So, (5) - (4)

$$D_{n+m}^{'2} - D_{n}^{'2} = \frac{4m\lambda R}{\mu} \dots \dots (6)$$

$$\Rightarrow \mu = \frac{4m\lambda R}{D_{n+m}^{'2} - D_{n}^{'2}}$$
This is the value of μ if λ is known.

